Michael Oettinger

From Sandbox to Production - How to Deploy Machine Learning Models?


Dienstag, 19. November 2019




Estrelsaal C5 & C6


The deep dive debates the question of how the somehow elitist „playing around“ of data scientists with machine learning models becomes a productive and stable application for the everyday business. Specifically, using three real-life case studies from the speakers consulting experience, various approaches and technical components are shown that enable the deployment of ML models: First, you will learn how a sales forecasting model of a delivery service created in KNIME was implemented with KNIME server. Secondly, a credit scoring model created in R becomes productive in a Databricks / Azure cloud environment. How would that have looked alternatively with the Cloudera Data Science Workbench in an on-premises Hadoop environment? Finally it is shown how a fraud detection model in Python was deployed as a web service using open-source components (Flask, Kubernetes, Dockers). The pros and cons and the hidden pitfalls are outlined beyond the colorful presentations of software vendors.

Bereit zur Teilnahme?

Jetzt anmelden! Schließen Sie sich Ihren Kollegen an.

Register nowView Agenda
Newsletter Fundiertes Wissen ist die Basis für alles! Melden Sie sich für den Newsletter an und erhalten Sie:
  • 10% Rabatt auf Ihr erstes Ticket
  • Einblicke, Interviews, Tipps, Neuigkeiten und vieles mehr
  • Erinnerungen an Preissenkungen