Stock Price Prediction and Portfolio Optimization Using Recurrent Neural Networks and Autoencoders

Time:

7:21 am

Summary:

Financial time series forecasting is a challenging problem. Deep learning approaches, such as recurrent neural networks (RNNs), have proven powerful in modelling the volatility of financial stocks and other assets, as they are able to capture non-linearities in sequential data. Recent studies have shown that RNNs have surpassed well-known autoregressive forecasting models (Siami-Namini, 2018). Besides forecasting the next value of a stock, mVISE is also interested in creating an optimal portfolio. Deep portfolio theory (Heaton et.al.,2018) uses autoencoders to model the non-linearity of the time series to accurately predict returns. Julian will extend this approach by first performing a 5-day ahead forecast and then train an autoencoder model to construct an ideal portfolio that incorporates previous and future stock market information. Attendees will be provided with a theoretical understanding of how RNNs and autoencoders work and how to apply them on multivariate timeseries forecasting and portfolio optimization problems. He will backtest the new model on financial stock data. Finally, the session will end with presenting an overview of key challenges and current research topics within that field.

Ready to attend?

Register now! Join your peers.

Register nowView agenda
Newsletter

Knowledge is everything!
Sign up for our newsletter to receive:

  • an extra 10% off your ticket!
  • insights, interviews, tips, news, and much more about Predictive Analytics World
  • price break reminders